
This book is licensed under a Creative Commons Attribution 3.0 License

13. Reals
Learning objectives:

• floating-point numbers and their properties

• pitfalls of numeric computation

• Horner's method

• bisection

• Newton's method

Floating-point numbers

Real numbers, those declared to be of type REAL in a programming language, are represented as floating-point

numbers on most computers. A floating-point number z is represented by a (signed) mantissa m and a (signed)

exponent e with respect to a base b: z=± m·b±e (e.g. z=+0.11·2–1). This section presents a very brief introduction to

floating-point arithmetic. We recommend [Gol91] as a comprehensive survey.

Floating-point numbers can only approximate real numbers, and in important ways, they behave differently.

The major difference is due to the fact that any floating-point number system is a finite number system, as the

mantissa m and the exponent e lie in a bounded range. Consider, as a simple example, the following number

system:

z = ±0.b1b2 · 2±e, where b1, b2, and e may take the values 0 and 1.

The number representation is not unique: The same real number may have many different representations,

arranged in the following table by numerical value (lines) and constant exponent (columns).

1.5 + 0.11 · 2+1

1.0 + 0.10 · 2+1

0.75 + 0.11 · 2±0

0.5 + 0.01 · 2+1 + 0.10 · 2±0

0.375 +0.11 · 2–1

0.25 + 0.01 · 2±0
+0.10 · 2–1

0.125 +0.01 · 2–1

0. +0.00 · 2+1 + 0.00 · 2±0 +0.00 · 2–1

The table is symmetric for negative numbers. Notice the cluster of representable numbers around zero. There

are only 15 different numbers, but 25= 32 different representations.

Exercise: a floating-point number system

Consider floating-point numbers represented in a 6-bit "word" as follows: The four bits b b 2 b1 b0 represent a

signed mantissa, the two bits e e0 a signed exponent to the base 2. Every number has the form x=b b2 b1 b0·2 ee0.

Algorithms and Data Structures 110 A Global Text

http://creativecommons.org/licenses/by/3.0/

13. Reals

Both the exponent and the mantissa are integers represented in 2's complement form. This means that the integer

values –2..1 are assigned to the four different representations e e0 as shown:

v e e0

 0 0 0

1 0 1

 –2 1 0

 –1 1 1

1. Complete the following table of the values of the mantissa and their representation, and write down a

formula to compute v from b b2 b1 b0.

v b b2 b1 b0

0 0 0 0 0

1 0 0 0 1

 …

7 0 1 1 1

 –8 1 0 0 0

 …

 –1 1 1 1 1

2. How many different number representations are there in this floating-point system?

3. How many different numbers are there in this system? Draw all of them on an axis, each number with all its

representations.

On a byte-oriented machine, floating-point numbers are often represented by 4 bytes =32 bits: 24 bits for the

signed mantissa, 8 bits for the signed exponent. The mantissa m is often interpreted as a fraction 0 ≤ m < 1, whose

precision is bounded by 23 bits; the 8-bit exponent permits scaling within the range

2–128
≤ 2e ≤ 2127. Because 32- and 64-bit floating-point number systems are so common, often coexisting on the

same hardware, these number systems are often identified with "single precision" and "double precision",

respectively. In recent years an IEEE standard format for-single precision floating-point numbers has emerged,

along with standards for higher precisions: double, single extended, and double extended.

111

This book is licensed under a Creative Commons Attribution 3.0 License

The following example shows the representation of the number

+1.011110 … 0 · 2–54

in the IEEE format:

Some dangers

Floating-point computation is fraught with problems that are hard to analyze and control. Unexpected results

abound, as the following examples show. The first two use a binary floating-point number system with a signed 2-

bit mantissa and a signed 1-bit exponent. Representable numbers lie in the range

–0.11 · 2+1 ≤ z ≤ +0.11 · 2+1.

Example: y + x = y and x ≠ 0

It suffices to choose |x| small as compared to |y|; for example,

x = 0.01 · 2–1, y = 0.10 · 2+1.

The addition forces the mantissa of x to be shifted to the right until the exponents are equal (i.e. x is represented

as 0.0001·2+1). Even if the sum is computed correctly as 0.1001 ·2+1 in an accumulator of double length, storing the

result in memory will force rounding: x + y=0.10·2+1=y.

Example: Addition is not associative: (x + y) + z ≠ x + (y + z)

The following values for x, y, and z assign different values to the left and right sides.

Left side: (0.10 · 2+1 + 0.10 · 2–1) + 0.10 · 2–1 = 0.10 · 2+1

Right side: 0.10 · 2+1 + (0.10 · 2–1 + 0.10 · 2–1) = 0.11 · 2+1

A useful rule of thumb helps prevent the loss of significant digits: Add the small numbers before adding the large

ones.

Example: ((x + y)2 – x2 – 2xy) / y2 = 1?

Let's evaluate this expression for large |x| and small |y| in a floating-point number system with five decimal

digits.

x = 100.00, y = .01000

x + y = 100.01

(x + y)2 = 10002.0001, rounded to five digits yields 10002.

x2 = 10000.

(x + y)2 – x2 = 2.???? (four digits have been lost!)

2xy = 2.0000

(x + y)2 – x2 – 2xy = 2.???? – 2.0000 = 0.?????

Now five digits have been lost, and the result is meaningless.

Example: numerical instability

Recurrence relations for sequences of numbers are prone to the phenomenon of numerical instability. Consider

the sequence

x0 = 1.0, x1 = 0.5, xn+1 = 2.5 · xn – xn–1.

Algorithms and Data Structures 112 A Global Text

http://creativecommons.org/licenses/by/3.0/

13. Reals

We first solve this linear recurrence relation in closed form by trying x i=ri for r≠0. This leads to rn+1 = 2.5 · rn–

rn–1, and to the quadratic equation 0 = r2– 2.5 · r + 1, with the two solutions r = 2 and r = 0.5.

The general solution of the recurrence relation is a linear combination:

xi = a · 2i + b · 2–i.

The starting values x0 = 1.0 and x1 = 0.5 determine the coefficients a=0 and b=1, and thus the sequence is given

exactly as xi = 2–i. If the sequence xi = 2–i is computed by the recurrence relation above in a floating-point number

system with one decimal digit, the following may happen:

x2 = 2.5 · 0.5 – 1 =0.2 (rounding the exact value 0.25),

x3 = 2.5 · 0.2 – 0.5 =0 (represented exactly with one decimal digit),

x4 = 2.5 · 0 – 0.2 =–0.2 (represented exactly with one decimal digit),

x5 = 2.5 · (–0.2)–0 =–0.5 represented exactly with one decimal digit),

x6 = 2.5 · (–0.5)–(–0.2) = –1.05 (exact) = –1.0 (rounded),

x7 = 2.5 · (–1) – (–0.5) = –2.0 (represented exactly with one decimal digit),

x8 = 2.5 · (–2)–(–1) = –4.0(represented exactly with one decimal digit).

As soon as the first rounding error has occurred, the computed sequence changes to the alternative solution x i =

a · 2i, as can be seen from the doubling of consecutive computed values.

Exercise: floating-point number systems and calculations

(a) Consider a floating-point number system with two ternary digits t1, t2 in the mantissa, and a ternary digit e

in the exponent to the base 3. Every number in this system has the form x = .t 1 t2 · 3
e, where t1, t2, and e

assume a value chosen among{0,1,2}. Draw a diagram that shows all the different numbers in this system,

and for each number, all of its representations. How many representations are there? How many different

numbers?

(b) Recall the series

which holds for |x| < 1, for example,

Use this formula to express 1/0.7 as a series of powers.

Horner's method

A polynomial of n-th degree (e.g. n = 3) is usually represented in the form

a3 · x3 + a2 · x2 + a1 · x + a0

but is better evaluated in nested form,

((a3 · x + a2) · x + a1) · x + a0.

113

This book is licensed under a Creative Commons Attribution 3.0 License

The first formula needs n multiplications of the form a i · x
i and, in addition, n–1 multiplications to compute the

powers of x. The second formula needs only n multiplications in total: The powers of x are obtained for free as a

side effect of the coefficient multiplications.

The following procedure assumes that the (n+1) coefficients ai are stored in a sufficiently large array a of type

'coeff':

type coeff = array[0 .. m] of real;

function horner(var a: coeff; n: integer; x: real): real;

var i: integer; h: real;

begin

h := a[n];

for i := n – 1 downto 0 do h := h · x + a[i];

return(h)

end;

Bisection

Bisection is an iterative method for solving equations of the form f(x) = 0. Assuming that the function f : R → R

is continuous in the interval [a, b] and that f(a) · f(b) < 0, a root of the equation f(x) = 0 (a zero of f) must lie in the

interval [a, b] (Exhibit 13.1). Let m be the midpoint of this interval. If f(m) = 0, m is a root. If f(m) · f(a) < 0, a root

must be contained in [a, m], and we proceed with this subinterval; if f(m) · f(b) < 0, we proceed with [m, b]. Thus at

each iteration the interval of uncertainty that must contain a root is half the size of the interval produced in the

previous iteration. We iterate until the interval is smaller than the tolerance within which the root must be

determined.

Exhibit 13.1: As in binary search, bisection excludes half of the interval

under consideration at every step.

function bisect(function f: real; a, b: real): real;

const epsilon = 10
–6

;

var m: real; faneg: boolean;

begin

faneg := f(a) < 0.0;

repeat

m := (a + b) / 2.0;

if (f(m) < 0.0) = faneg then a := m else b := m

until |a – b| < epsilon;

return(m)

Algorithms and Data Structures 114 A Global Text

http://creativecommons.org/licenses/by/3.0/

13. Reals

end;

A sequence x1, x2, x3,… converging to x converges linearly if there exist a constant c and an index i0 such that for

all I > i0: |xi+1 – x| ≤ c · |xi – x|. An algorithm is said to converge linearly if the sequence of approximations

constructed by this algorithm converges linearly. In a linearly convergent algorithm each iteration adds a constant

number of significant bits. For example, each iteration of bisection halves the interval of uncertainty in each

iteration (i.e. adds one bit of precision to the result). Thus bisection converges linearly with c = 0.5. A sequence x 1,

x2, x3,… converges quadratically if there exist a constant c and an index i0 such that for all i > i0: |xi+1 – x| ≤ c ·|xi –

x|2.

Newton's method for computing the square root

Newton's method for solving equations of the form f(x) = 0 is an example of an algorithm with quadratic

convergence. Let f: R → R be a continuous and differentiable function. An approximation xi+1 is obtained from xi by

approximating f(x) in the neighborhood of xi by its tangent at the point (xi, f(xi)), and computing the intersection of

this tangent with the x-axis (Exhibit 13.2). Hence

x ix i+1

f(x)i

x

Exhibit 13.2: Newton's iteration approximates a curve locally by a tangent.

Newton's method is not guaranteed to converge (Exercise: construct counterexamples), but when it converges, it

does so quadratically and therefore very fast, since each iteration doubles the number of significant bits.

To compute the square root x = √a of a real number a > 0 we consider the function f(x) = x2 – a and solve the

equation x2– a = 0. With f'(x)= 2 · x we obtain the iteration formula:

The formula that relates xi and xi+1 can be transformed into an analogous formula that determines the

propagation of the relative error:

115

This book is licensed under a Creative Commons Attribution 3.0 License

Since

we obtain for the relative error:

Using

we get a recurrence relation for the relative error:

If we start with x0 > 0, it follows that 1+R0 > 0. Hence we obtain

R1 > R2 > R3 > … > 0.

As soon as Ri becomes small (i.e. Ri « 1), we have 1 + Ri ≈ 1, and we obtain

Ri+1 ≈ o.5 · Ri
2

Newton's method converges quadratically as soon as xi is close enough to the true solution. With a bad initial

guess Ri » 1 we have, on the other hand, 1 + Ri ≈ Ri, and we obtain Ri+1 ≈ 0.5 · Ri (i.e. the computation appears to

converge linearly until Ri « 1 and proper quadratic convergence starts).

Thus it is highly desirable to start with a good initial approximation x0 and get quadratic convergence right from

the beginning. We assume normalized binary floating-point numbers (i.e. a = m · 2e with 0.5 ≤ m <1). A good

approximation of is obtained by choosing any mantissa c with 0.5 ≤ c < 1 and halving the exponent:

In order to construct this initial approximation x0, the programmer needs read and write access not only to a

"real number" but also to its components, the mantissa and exponent, for example, by procedures such as

procedure mantissa(z: real): integer;

procedure exponent(z: real): integer;

procedure buildreal(mant, exp: integer): real;

Today's programming languages often lack such facilities, and the programmer is forced to use backdoor tricks

to construct a good initial approximation. If x0 can be constructed by halving the exponent, we obtain the following

upper bounds for the relative error:

R1 < 2–2, R2 < 2–5, R3 < 2–11, R4 < 2–23, R5 < 2–47,R6 < 2–95.

Algorithms and Data Structures 116 A Global Text

http://creativecommons.org/licenses/by/3.0/

13. Reals

It is remarkable that four iterations suffice to compute an exact square root for 32-bit floating-point numbers,

where 23 bits are used for the mantissa, one bit for the sign and eight bits for the exponent, and that six iterations

will do for a "number cruncher" with a word length of 64 bits. The starting value x 0 can be further optimized by

choosing c carefully. It can be shown that the optimal value of c for computing the square root of a real number is c

= 1/√2 ≈ 0.707.

Exercise: square root

Consider a floating-point number system with two decimal digits in the mantissa: Every number has the form x

= ± .d1 d2 · 10±e.

(a) How many different number representations are there in this system?

(b) How many different numbers are there in this system? Show your reasoning.

(c) Compute √50 · 102 in this number system using Newton's method with a starting value x0 = 10. Show every

step of the calculation. Round the result of any operation to two digits immediately.

Solution

(a) A number representation contains two sign bits and three decimal digits, hence there are 22 · 103 = 4000

distinct number representations in this system.

(b) There are three sources of redundancy:

1. Multiple representations of zero

2. Exponent +0 equals exponent –0

3. Shifted mantissa: ±.d0 · 10 ±e=±.0d · 10 ±e + 1

A detailed count reveals that there are 3439 different numbers.

Zero has 22·10 = 40 representations, all of the form ±.00·10±e, with two sign bits and one decimal digit e to be

freely chosen. Therefore, r1 = 39 must be subtracted from 4000.

If e = 0, then ±.d1d2 · 10+0=±.d1d2 · 10–0. We assume furthermore that d1d2 ≠ 00. The case d1d2 = 00 has been

covered above. Then there are 2 · 99 such pairs. Therefore, r2= 198 must be subtracted from 4000.

If d2 = 0, then ±.d10 · 10±e = ±.0d1 · 10±e+1. The case d1 = 0 has been treated above. Therefore, we assume that d1

≠ 0. Since ±e can assume the 18 different values –9, –8, … , –1, +0, +1, … +8, there are 2 · 9 · 18 such pairs.

Therefore, r3 = 324 must be subtracted from 4000.

There are 4000 – r1– r2– r3 = 3439 different numbers in this system.

(c) Computing Newton's square root algorithm:

x0 = 10

x1 = .50 · (10 + 50/10) = .50 · (10 + 5) = .50 · 15 = 7.5

x2 = .50 · (7.5 + 50/7.5) = .50 · (7.5 + 6.6) = .50 · 14 = 7

x3 = .50 · = .50 · (7 + 50/7) = (7 + 7.1) = .50 · 14 = 7

117

This book is licensed under a Creative Commons Attribution 3.0 License

Exercises

1. Write up all the distinct numbers in the floating-point system with number representations of the form

z=0.b1b2 · 2e1e2, where b1, b2 and e1, e2 may take the values 0 and 1, and mantissa and exponent are

represented in 2's complement notation.

2. Provide simple numerical examples to illustrate floating-point arithmetic violations of mathematical

identities.

Algorithms and Data Structures 118 A Global Text

http://creativecommons.org/licenses/by/3.0/

